HORNSBY GIRLS HIGH SCHOOL

Mathematics

Year 12 Higher School Certificate Trial Examination Term 3 2013

STUDENT NUMBER:

General Instructions

- Reading Time 5 minutes
- Working Time 3 hours
- Write using black or blue pen
 Black pen is preferred
- Board-approved calculators may be used
- A table of standard integrals is provided separately
- In Questions 11 16, show relevant mathematical reasoning and/or calculations
- Marks may be deducted for untidy and poorly arranged work
- Do not use correction fluid or tape
- Do not remove this paper from the examination

Total marks - 100

Section I Pages 3-5

10 marks

Attempt Questions 1 - 10

Answer on the Objective Response Answer Sheet provided

Section II Pages 6-15

90 marks

Attempt Questions 11 - 16. Start each question in a new writing booklet. Write your student number on every writing booklet

Question	1-10	11	12	13	14	15	16	Total
Total								
	/10	/15	/15	/15	/15	/15	/15	/100

BLANK PAGE

Section I

10 marks

Attempt Questions 1 – 10

Allow about 15 minutes for this section

Use the Objective Response answer sheet for Questions 1 - 10

- 1 What is 25.09582 correct to 4 significant figures?
 - (A) 25.09
 - (B) 25.10
 - (C) 25.095
 - (D) 25.096
- The solutions of $8x x^2 < 0$ are:
 - (A) 0 < x < 8
 - (B) x < 0, x < 8
 - (C) x < 0, x > 8
 - (D) x > 0, x < 8
- 3 Factorise completely $a^3b ab^3 4a^2 + 4b^2$
 - (A) $ab(a^2-b^2)-4(a^2+b^2)$
 - (B) $ab(a^2-b^2)-4(a^2-b^2)$
 - (C) $(ab-4)(a^2-b^2)$
 - (D) (a-b)(ab-4)(a+b)
- 4 If α and β are the roots of the equation $2x^2 + 5x 4 = 0$, then $\alpha^2 + \beta^2 =$
 - (A) $6\frac{1}{4}$
 - (B) $10\frac{1}{4}$
 - (C) $2\frac{1}{4}$
 - (D) 4

5 The period of the function $y = 3 \tan\left(\frac{x}{3}\right)$ is:

- (A) $\frac{\pi}{3}$
- (B) π
- (C) 3π
- (D) 6π

What is the equation of the tangent to the curve $y = x^2 - 5x$ at the point (1,-4)?

- (A) y = -3x 1
- (B) y = -3x 7
- (C) y = 3x + 7
- (D) y = 3x 7

7 Solve $\sin 2\theta = \frac{-\sqrt{3}}{2}$ in the domain $0^{\circ} \le \theta \le 180^{\circ}$:

- (A) $\theta = 60^{\circ}$
- (B) No solutions
- (C) $\theta = 120^{\circ}$
- (D) $\theta = 120^{\circ}, 150^{\circ}$

What is the solution to the equation $\log_e(x+2) - \log_e x = \log_e 4$?

- (A) $\frac{2}{5}$
- (B) $\frac{2}{3}$
- (C) $\frac{3}{2}$
- (D) $\frac{5}{2}$

A region in the diagram is bounded by the curve $y = x^4$, the y - axis and the line y = 16.

NOT TO SCALE

Which of the following expressions is correct for the volume of the solid of revolution when this region is rotated about the y-axis?

(A)
$$V = \pi \int_0^{16} y^{\frac{1}{2}} dy$$

(B)
$$V = \pi \int_0^{16} x^8 dx$$

(C)
$$V = \pi \int_0^2 y^{\frac{1}{2}} dy$$

$$(D) V = \pi \int_0^2 x^8 dx$$

- 10 The value of $\sum_{n=2}^{5} 2n^2$ is:
 - (A) 50
 - (B) 108
 - (C) $205\frac{1}{32}$
 - (D) $362\frac{21}{32}$

End of Section I

Section II

90 marks

Attempt Questions 11 - 16

Allow about 2 hours and 45 minutes for this section

Answer each question in a new writing booklet. Extra writing booklets are available.

In Questions 11 - 16, your responses should include relevant mathematical reasoning and/or calculations.

Question 11 (15 marks)

(a) Evaluate
$$\sqrt[3]{\left(\frac{a}{b}\right)^b}$$
, correct to three decimal places, where $a=3$ and $b=2$.

(b) Solve the equation
$$4x^2 = x$$
.

(c) Solve the equation
$$|4-x|=2x$$
.

(d) Express
$$\frac{1}{4-\sqrt{13}}$$
 in the form $a+b\sqrt{13}$, where a and b are rational numbers.

(e) Find
$$\int e^{3x} dx$$
.

(f) Sketch the parabola
$$x^2 = -4y + 8$$
, showing the vertex, focus and directrix.

(g) Differentiate
$$x^3$$
 from first principles.

- (a) Differentiate the following, with respect to x:
 - (i) $e^x \sin x$.

2

(ii)
$$\frac{\log_e x}{x^3}$$

2

(b) Find the exact value of $\int_0^{\frac{\pi}{4}} \frac{\cos x}{\sin x + 3} dx.$

3

(c) A stained-glass window can be modelled as the region bounded by the curve $y = \sin^2 x + 1$, the coordinate axes and $x = \pi$.

The graph of $y = \sin^2 x + 1$ for $0 \le x \le \pi$ is shown below.

(i) Copy and complete the table with exact values in your writing booklet.

1

х	0	$\frac{\pi}{4}$	$\frac{\pi}{2}$	$\frac{3\pi}{4}$	π
У	1				1

(ii) Use Simpson's Rule with 5 function values to calculate the approximate area of glass needed for the window. Answer correct to 2 decimal places.

2

Question 12 continues on page 8

Question 12 (continued)

(d) Incey Wincey spider makes a web in the shape of concentric regular hexagons. First he makes the 6 arms which are each 45 cm long. He then makes the sides of each regular hexagon. The first is 3 cm from the centre along each arm. Each successive regular hexagon is 2 cm further along the arm. The last hexagon is at the end of the arms.

NOT TO SCALE

(i) How many regular hexagons does Incey Wincey create?

3

2

(ii) Find the total length of the web, including the arms, created by Incey Wincey.

End of Question 12

Question 13 (15 marks)

Start a new writing booklet

(a) The diagram below shows two points A(2,2) and B(1,5) on the number plane.

Copy the diagram into your writing book.

(i) Find the coordinates of M, the midpoint of AB.

1

(ii) Show that the equation of the perpendicular bisector of AB is x-3y+9=0.

2

(iii) Find the coordinates of the point C that lies on the y-axis and is equidistant from A and B.

1

(iv) The point D lies on the intersection of the line y = 5 and the perpendicular bisector x-3y+9=0. Find the coordinates of D, and mark the position of D on your diagram in your writing booklet.

1

(v) Find the area of triangle ABD.

2

Question 13 continues on page 10

Question 13 (continued)

- (b) (i) Find the points of intersection of the parabola $y = x^2 + 3x 5$ and the line y = 2x + 1.
 - (ii) Hence find the area enclosed between the parabola $y = x^2 + 3x 5$ and the line y = 2x + 1.
- (c) A school softball team has a probability of 0.2 of winning any match.
 - (i) Find the probability the team wins exactly one of its first two matches. 2
 - (ii) What is the least number of consecutive matches the team must play to be 90% certain that it will win at least one match?

End of Question 13

Question 14 (15 marks)

Start a new writing booklet

Consider the curve $y = x^3 + 4x^2 - 3x + 2$. (a)

> Find $\frac{dy}{dx}$ and $\frac{d^2y}{dx^2}$. (i)

2

Find the coordinates of the stationary points and determine their nature. (ii)

2

Find the coordinates of any points of inflexion.

2

Sketch the graph of $y = x^3 + 4x^2 - 3x + 2$, clearly showing any stationary points, (iv) points of inflexion and the y-intercept.

2

Hence find the number of solutions to the equation $x^3 + 4x^2 - 3x + 2 = -1$. (v)

1

The mass M kg of a radioactive substance present after t years is given by $M = 20e^{-kt}$, (b) where k is a positive constant. After 200 years, the mass has reduced to 10kg.

1

(i) What is the initial mass?

(ii) Find the exact value of k. 2

(iii) What amount of radioactive substance would remain after a period of 2000 years?

1

For what values of k does the equation $x^2 - 2x + 3 = k$ have real roots?

2

(a) ABCD is a square. Points E and F lie on DC such that DE = CF.

NOT TO SCALE

Copy or trace the diagram into your writing booklet

(i) Prove that $\triangle AFD \equiv \triangle BEC$.

3

(ii) Hence or otherwise, prove that GE = GF.

1

- (b) The velocity of a particle is given by $\frac{dx}{dt} = t^2 5t + 6$, $t \ge 0$, where x is displacement in metres and t is time in seconds. Initially the particle is 3 metres to the left of the origin.
 - (i) Find when the velocity of the particle is zero.

1

(ii) Find the minimum velocity of the particle.

1

(iii) Find the displacement x of the particle in terms of t.

2

(iv) Find the distance travelled by the particle in the first 3 seconds.

2

Question 15 continues on page 13

Question 15 (continued)

- (c) Rita takes out a loan of \$30 000 to buy a new car. The loan is to be repaid over 5 years (60 months) in equal monthly repayments (Q) at the end of each month.
 Reducible interest is charged at 9% per annum, calculated monthly.
 Let \$A_n be the amount owing after the nth payment.
 - (i) Write an expression for the amount owing after 1 month, $\$A_1$.
 - (ii) Show that $A_n = 30000 (1.0075)^n \frac{400Q(1.0075^n 1)}{3}$.
 - (iii) What will the monthly repayment be to the nearest dollar?

End of Question 15

Question 16 (15 marks) Start a new writing booklet

(a) If
$$6x^2 - 11 \equiv A(x+2)^2 + Bx + C$$
, find the values of A, B and C.

2

1

2

- (b) (i) Given that $a^2 + b^2 = 7ab$, show that $\left(\frac{a+b}{3}\right)^2 = ab$.
 - (ii) Hence, write $\log\left(\frac{a+b}{3}\right) \frac{1}{4}(\log a + \log b)$ in simplest form.
- (c) In the diagram below, ABCD is a parallelogram. AD = 5, AE = 3, DE = 4, AF = 5 and $AF \perp BC$.

Copy or trace the diagram into to your writing booklet

- (i) Prove that $\angle ADE = \angle EAF$.
- (ii) Find the exact length of EF.

Question 16 continues on page 15

Question 16 (continued)

(d) In the figure below, AB and AC are radii of length r metres of a circle with centre A. The arc BC of the circle subtends an angle of θ at A. The perimeter of the figure ABC is 12 metres.

- (i) Show that the area Y square metres of the sector ABC is given by $Y = \frac{72\theta}{(\theta+2)^2}$.
- (ii) Hence, show that the maximum area of the sector is 9 square metres.

End of Paper

BLANK PAGE

Hornsby Girls High School Mathematics Trial Examination 2013 Solutions and Marking Criteria Objective Response Questions 1 – 10

Objective Response Questions 1 – 10	
Solutions	Marking Criteria
Question 1	Students should not be getting this wrong
$25.0983 \approx 25.10 (4sf)$	at this point! You must speak to your
Option B	teacher if you need help with rounding.
Question 2	
$8x - x^2 < 0$	
x(8-x) < 0	
$\therefore x < 0, x > 8$	
Option C	
Question 3	A lot of students failed to recognise the
$a^{3}b - ab^{3} - 4a^{2} + 4b^{2} = ab(a^{2} - b^{2}) - 4(a^{2} - b^{2})$	difference of two squares.
	any crones of the squares.
$=(a^2-b^2)(ab-4)$	
= (a-b)(a+b)(ab-4)	
Option D	
Question 4	
$2x^2 + 5x - 4 = 0$	
$\alpha + \beta = \frac{-5}{2} \qquad \alpha \beta = -2$	
$\alpha^2 + \beta^2 = (\alpha + \beta)^2 - 2\alpha\beta$	
$=\frac{25}{4}+4$	
$=\frac{41}{4}$	
4	
$=10\frac{1}{4}$	
Option B	
Overtice 5	
Question 5	Many students just assumed the period
$T = \frac{\pi}{n}$	was $\frac{2\pi}{n}$ for trig functions.
•	n n
$=\pi \div \frac{1}{3}$	
$=3\pi$	
Option C	
Question 6	
$y = x^2 - 5x$	
y' = 2x - 5	
When $x = 1$, $y' = -3$	
Equation of tangent:	
y+4=-3(x-1)	
y = -3x + 3 - 4	
y = -3x - 1	
Option A	

Question 7	
$\sin 2\theta = \frac{-\sqrt{3}}{2}$	
$\sin 2\theta = \frac{1}{2}$	
$0^{\circ} \le \theta \le 180^{\circ}$	
0° ≤ 2θ ≤ 360° ≪	
$2\theta = 240^{\circ}, 300^{\circ}$	Students should adjust the domain to
$\theta = 120^{\circ}, 150^{\circ}$	show restrictions on 2θ .
0 - 120 ,130	
Option D	
Question 8	
$\ln(x+2) - \ln x = \ln 4$	
$ \ln\left(\frac{x+2}{x}\right) = \ln 4 $	
$\left \ln \left(\frac{1}{x} \right) \right = \ln 4$	
x+2	
$\frac{x+2}{x} = 4$	
x+2=4x	
2=3x	
$x = \frac{2}{3}$	
3	
Option B	
Question 9	
$V = \pi \int_{a}^{b} x^{2} dy$ $= \pi \int_{a}^{16} y^{\frac{1}{2}} dy$	
6 16 <u>1</u>	
Option A	
Question 10	
$2(2^2+3^2+4^2+5^2)=108$	
Option B	

Ouestion 11

Solutions (a) $\sqrt{\left(\frac{3}{2}\right)^2} = 1.31037$ $= 1.310 (3dp)$ (b) $4x^2 = x$ $4x^2 - x = 0$ $x(4x - 1) = 0$ $x = 0, x = \frac{1}{4}$ (c) $ 4 - x = 2x$ $4 - x = 2x$ $4 - x = 2x$ $4 - x = 2x$ $4 - 3x$ $4 - x = -2x$ $4 - 3x$ $4 - x = -2x$ $4 - 3x$ $4 - x = -4$ $x = \frac{4}{3}$ Testing Solutions When: $x = \frac{4}{3}$ $LHS = 4 - \frac{4}{3} $ $x = -4$ $LHS = 4 - 4 $ $= 8$ $= 8$ $RHS = 2 \times -4$ $= \frac{8}{3}$	
(a) $\sqrt[3]{\frac{3}{2}}^2 = 1.31037$ $= 1.310 (3dp)$ (b) $4x^2 = x$ $4x^2 - x = 0$ x(4x - 1) = 0 $x = 0, x = \frac{1}{4}$ (c) $ 4 - x = 2x$ Case 1 $Case 2$: 4 - x = 2x 4 - 3x $4 - x = -2x4 - 3x$ $4 - x = -2x4 - x = -$	
(b) $4x^{2} = x$ $4x^{2} - x = 0$ $x(4x-1) = 0$ $x = 0, x = \frac{1}{4}$ (c) $ 4-x = 2x$ $Case 1 \qquad Case 2:$ $4-x = 2x$ $4 = 3x \qquad 4-x = -2x$ $x = -4$ $x = \frac{4}{3}$ Testing Solutions When: $x = \frac{4}{3}$ $LHS = 4-\frac{4}{3} $ $x = -4$ $ 8 $	
$4x^{2} = x$ $4x^{2} - x = 0$ $x(4x - 1) = 0$ $x = 0, x = \frac{1}{4}$ (c) $ 4 - x = 2x$ $Case 1 \qquad Case 2:$ $4 - x = 2x$ $4 - 3x \qquad 4 - x = -2x$ $x = -4$ $x = \frac{4}{3}$ Testing Solutions When: $x = \frac{4}{3}$ $LHS = \left 4 - \frac{4}{3}\right $ $x = -4$ $ 8 $	
$x(4x-1) = 0$ $x = 0, x = \frac{1}{4}$ (c) $ 4-x = 2x$ $Case 1 \qquad Case 2:$ $4-x = 2x$ $4=3x \qquad 4-x=-2x$ $x=-4$ $x = \frac{4}{3}$ Testing Solutions When: $x = \frac{4}{3}$ $LHS = \left 4-\frac{4}{3}\right $ $x = -4$ $ 8 $	
(c) $ 4-x = 2x$ Case 1	
(c) $ 4-x = 2x$ Case 1	
$\begin{vmatrix} 4-x = 2x \\ \text{Case 1} & \text{Case 2:} \\ 4-x = 2x \\ 4=3x & 4-x=-2x \\ x=\frac{4}{3} & x=-4 \end{vmatrix}$ Testing Solutions When: $x = \frac{4}{3}$ $LHS = \left 4-\frac{4}{3}\right $ $x = -4$ $ 8 $ Too many students are not testing solutions.	
$4 = 3x$ $x = \frac{4}{3}$ Testing Solutions When: $x = \frac{4}{3}$ $LHS = \left 4 - \frac{4}{3} \right $ $x = -4$ $ 8 $ $x = 4$ $ 8 $	
Testing Solutions When: $x = \frac{4}{3}$ $x = \frac{4}{3}$ $LHS = \left 4 - \frac{4}{3} \right $ $x = -4$ $ 8 $ Too many students are not testing solutions.	
When: $x = \frac{4}{3}$ $LHS = \left 4 - \frac{4}{3} \right $ $x = -4$ $ 8 $ Too many students are not testing solutions.	
$LHS = \left 4 - \frac{4}{3} \right $ $x = -4$ $ 8 $	
101	
_ Q	
$RHS = 2 \times -4 \qquad \qquad = \frac{3}{3}$	
$= -8$ $\neq LHS$ $RHS = 2 \times \frac{4}{3}$	
$=\frac{8}{3}$ $= LHS$	
The only solution is $x = \frac{4}{3}$	
$\frac{1}{4 - \sqrt{13}} \times \frac{4 + \sqrt{13}}{4 + \sqrt{13}} = \frac{4 + \sqrt{13}}{3}$	
$= \frac{4}{3} + \frac{\sqrt{13}}{3}$ $a = \frac{4}{3}, b = \frac{1}{3}$	

(e) $\int e^{3x} dx = \frac{1}{3} \int 3e^{3x} dx$ $= \frac{1}{3} e^{3x} + C$	
$= \frac{1}{3}e^{3x} + C$ (f)	
$x^{2} = -4y + 8$ $x^{2} = -4(y - 2)$ Focus: $S = (0,1)$	
Directrix $y = 3$ Directrix $y = 3$	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
-2-	
(g) Change solutions $f(x) = x^3$	Too many students do not know definition of "from first principles" and use incorrect notation.
$f(x+h) = (x+h)^{3}$ $= x^{3} + 3hx^{2} + 3h^{2}x + h^{3}$ $f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$	
$\frac{d}{dx}(x^3) = \lim_{h \to 0} \frac{(x^3 + 3hx^2 + 3h^2x + h^3) - x^3}{h}$ $= \lim_{h \to 0} \frac{3hx^2 + 3h^2x + h^3}{h}$	
$= \lim_{h \to 0} \left(3x^2 + 3hx + h^2 \right)$ $= 3x^2$	

Question 12

Question 12	
Solutions	Marking Criteria
(a)	① Correct product rule method
(i)	① Correct answer
$\frac{d}{dx}(e^x \sin x) = e^x \cos x + e^x \sin x$	
$=e^{x}(\sin x+\cos x)$	
(ii)	① Correct rule
$\frac{d}{dx} \left(\frac{\log_e x}{x^3} \right) = \frac{x^3 \times \frac{1}{x} - 3x^2 \log_e x}{x^6}$	① Correct answer
$\frac{d}{dt} \left(\frac{\log_e x}{3} \right) = \frac{x}{6}$	Come of the desired by desired and the second secon
	Some students had numerator around the
$=\frac{x^2 - 3x^2 \log_e x}{x^6}$	wrong way.
$1-3\log_e x$	
$=\frac{1-3\log_e x}{x^4}$ (b)	·
(b)	A lot of students did not recognise
π	
$\int_0^{\frac{\pi}{4}} \frac{\cos x}{\sin x + 3} dx = \left[\ln(\sin x + 3) \right]_0^{\frac{\pi}{4}}$	$\int f'(x) dx dx dx dx$
	$\int \frac{f'(x)}{f(x)} dx = \ln(f(x)) + C$
$= \ln(\frac{1}{\sqrt{2}} + 3) - \ln 3$	
\ -	
$=\ln\frac{1+3\sqrt{2}}{\sqrt{2}}-\ln 3$	
$-m\frac{-m}{\sqrt{2}}$	
$(1, 2, \sqrt{2})$	
$=\ln\left(\frac{1+3\sqrt{2}}{3\sqrt{2}}\right)$	
$(3\sqrt{2})$	·
$(\sqrt{2}+6)$	
$=\ln\left(\frac{\sqrt{2}+6}{6}\right)$	
(c) (i)	① All correct answers
	© Correct formula & substitution
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	① Correct result
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	
$A \approx \frac{h}{3} (y_0 + y_4 + 4 \times (y_1 + y_3) + 2 \times y_2)$	
5	
$= \frac{\frac{\pi}{4}}{3} \left(1 + 1 + 4 \times \left(1 \frac{1}{2} + 1 \frac{1}{2} \right) + 2 \times 2 \right)$	
(ii) $=\frac{\pi}{12}(2+12+4)$	
$=\frac{\pi}{12}\times18$	
$=\frac{3\pi}{2}$	
-	
$\approx 4.71 units^2$	
	1

(1)	
(d)	① Show pattern as an arithmetic
(i) Change solutions	sequence
$T_1 = 3$	① Correct answer
$T_2 = 5$	
<u> </u>	Some students did by trial/error OR
$T_3 = 7$	counting which tended to lead to errors.
a = 3, d = 2	
$T_n = 3 + 2(n-1)$	
=3+2n-2	
=2n+1	
2n+1=45	
2n = 44	
n=22	
∴ 22 regular hexagons	
(ii)	① Show arithmetic series
Hexagon perimter = $6 \times 3 + 6 \times 5 + 6 \times 45$	① Correct formula
=6(3+5++45)	① Correct result
22	
$=6\times\frac{22}{2}(3+45)$	Some students forgot arms.
Lind	Some failed to see question as an
$=66\times48$	arithmetic series.
=3168	Some had one sixth of answer for
$=3168+6\times45$	hexagons.
Total Length $= 3438 cm$	
יווט טעדע	

ì

Ouestion 13

Marking Criteria
① Required gradient ① Correct equation.
Many students failed to recognise that every point on the perpendicular bisector of AB will be equidistant from A and B – so C is the y intercept of the perpendicular bisector.

(v)	① for any relevant and correct
h=5-2	calculation.
= 3	① Correct answer
b=5	Much easier to do with the aid of a
$A = \frac{1}{2} \times 5 \times 3$	diagram.
$= 7.5 \text{ units}^2$	
(b)	① for quadratic equation
(i) 2	① for points of intersection
$y = x^2 + 3x - 5 \dots (1)$	
$y = 2x + 1 \dots (2)$	
Equating (1) and (2)	
$2x+1=x^3+3x-5$	
$0 = x^2 + x - 6$	
0 = (x+3)(x-2)	
x = -3, x = 2	
When $x = 2$, $y = 5$ and $x = -3$, $y = -5$	
The points of intersection are $(2,5)$ and $(-3,-5)$	
(ii)	① for correct integration (including
6 B = (2.5)	limits)
, , , , , , , , , , , , , , , , , , , ,	① for answer
-10 -8 -6 4 -2 0 2 4 6 8	Some students used the y values for the
7-2	limits
-4 A = (-3) -5)	
-8	
/ -10 	
$A = \int_{-3}^{2} ((2x+1) - (x^2 + 3x - 5)) dx$	
$= \int_{-3}^{2} (-x^2 - x + 6) dx$	
$= \left[\frac{-x^3}{3} - \frac{x^2}{2} + 6x \right]_{-3}^2$	
$=\left(\frac{-8}{3}-2+12\right)-\left(\frac{27}{3}-\frac{9}{2}-18\right)$	
$=\frac{125}{6} units^2$	
(c)	\bigcirc for either $P(WL)$ or $P(LW)$
0.2 W	① Correct answer
0.2 - W	
0.8	
0.8 L 0.2 W	
0.8 L	

$P(one\ win) = 0.2 \times 0.8 + 0.8 \times 0.2$
$=2\times0.2\times0.8$
=0.32

(ii)

Win first 0.2

Lost first win second 0.2×0.8

Lose first, lose second, win third $0.2 \times 0.8 \times 0.8$

P(at least one)=
$$0.2 + 0.2 \times 0.8 + 0.2 \times 0.8^2 + ...$$

 $a = 0.2, r = 0.8$

Let
$$S_n = \frac{9}{10}$$

$$\frac{9}{10} = \frac{0.2(1 - 0.8^n)}{1 - 0.8}$$

$$0.18 = 0.2 \times (1 - 0.8^n)$$

$$0.9 = 1 - 0.8^n$$

$$0.8^n = 0.1$$

$$n = \frac{\ln 0.1}{\ln 0.8}$$

$$\approx 10.31$$

Therefore need to play 11 matches to have a 90% chance of winning at least one game.

ALTERNATIVE METHOD:

P(win at least one) = 1 - P(lose all)

$$0.9 = 1 - (0.8)^n$$

$$0.8^n = 0.1$$

$$\ln 0.8^n = \ln 0.1$$

$$n \ln 0.8 = \ln 0.1$$

$$n = \frac{\ln 0.1}{\ln 0.8}$$

① for setting up $0.8^n = 0.1$

① Correct answer

Over-simplified by many students and poorly done.

Question 14

Question 14	
Solutions	Marking Criteria
(a)	① for $\frac{dy}{dy}$
(i)	① for $\frac{dy}{dx}$ ① for $\frac{d^2y}{dx^2}$
$y = x^3 + 4x^2 - 3x + 2$	\bigcirc for $\frac{d^2y}{d}$
$\frac{dy}{dx} = 3x^2 + 8x - 3$	dx^2
d^2y	
$\frac{\partial}{\partial x^2} = 6x + 8$	
$\frac{d^2y}{dx^2} = 6x + 8$ (ii)	① for minimum stat. pt
Let $\frac{dy}{dx} = 0$	① for maximum stat. pt
Let $\frac{d}{dx} = 0$	•
$3x^2 + 8x - 3 = 0$	
$3x^2 + 9x - x - 3 = 0$	
3x(x+3) - 1(x+3) = 0	
(3x-1)(x+3) = 0	
$x = -3, x = \frac{1}{3}$	
$\begin{bmatrix} x-3, x-3 \end{bmatrix}$	
When $x = -3$	
$y = (-3)^3 + 4(-3)^2 - 3(-3) + 2$	
= 20	
When $x = \frac{1}{3}$	
3	
$\left(-1\right)^{3}$ $\left(-1\right)^{2}$ $\left(-1\right)$	
$y = \left(\frac{-1}{3}\right)^3 + 4\left(\frac{-1}{3}\right)^2 - 3\left(\frac{-1}{3}\right) + 2$	
$=\frac{40}{27}(\approx 1.4)$	
<u>~ 1</u>	St. Janks and a 1.1 c. C.1
Testing:	Students are reminded that if they are
When $x = -3$	using a table of values to determine the nature of the stationary point, NOT to
$\int d^2y dx = \int \int d^2y dx$	just use $+$ and $-$ signs in the table.
$\frac{d^2y}{dx^2} = 6(-3) + 8$	3
=-10 < 0	
Therefore maximum at (-3,20)	
When $x = \frac{1}{3}$	
$d^2y = (1 + 1)^2$	
$\frac{d^2y}{dx^2} = 6(\frac{1}{3}) + 8$	
=10>0	
Therefore minimum at $\left(\frac{1}{3}, \frac{40}{27}\right)$	
(5 ~ 7)	

(iii)	① for point of inflexion
Let $\frac{d^2y}{dx^2} = 0$	① for testing change of concavity
6x + 8 = 0	
_4	
$x = \frac{-4}{3}$	
When $x = \frac{-4}{3}$	
$y = \left(\frac{-4}{3}\right)^3 + 4\left(\frac{-4}{3}\right)^2 - 4\left(\frac{-4}{3}\right) + 2$	
$=\frac{290}{27} (\approx 10.74)$	
Test	Some students did not test for a change
x = -2, $y'' = -4$	in concavity.
x = -1, y'' = 2	
Therefore, change in concavity at $\left(\frac{-4}{3}, \frac{290}{27}\right)$	
(iv)	① for shape
30	\bigcirc for labelling (especially <i>y</i> intercept)
C 20- F 10- -6 -4 -2 0 2	It was disappointing to see so many poorly drawn graphs. • Do NOT use a feathered line. • Your graph should be a smooth, freehand CURVE. • Show that the graph cuts the x axis. • Label key points but no need to annotate with "maximum", "minimum", etc.
(v) From inspection, there is one solution to the equation $x^3 + 4x^2 - 3x + 2 = -1$	
(b)	
(i) $M = 20e^{-kt}$ When $t = 0$	
$M = 20e^0$	

= 20

∴ Initial mass is 20 kg

(ii)	① for setting up $\frac{1}{2} = e^{-200k}$
$M = 20e^{-kt}$	
When $t = 200, M = 10$	① Correct answer in exact form
$10 = 20e^{-200k}$	
$\frac{1}{2} = e^{-200k}$	
$-200k = \ln\frac{1}{2}$	
$k = \frac{-1}{200} \ln \frac{1}{2}$	
$k = \frac{1}{200} \ln 2$	
(iii) Let $t = 2000$	
$M = 20 \times e^{-2000 \times \frac{1}{200} \ln 2}$	
= 0.1953	
=19.53 grams	
= 20 grams (nearest gram)	
(c)	① for discriminant OR stating condition
$x^2 - 2x + 3 - k = 0$	for real roots to exist.
$\Delta = 4 - 4 \times 1 \times (3 - k)$	Many students failed to find the
Let $\Delta \geq 0$	discriminant correctly.
$0 \le 4 - 4(3 - k)$	Students who incorrectly stated that for
$0 \le 4 - 12 + 4k$	real roots, $\Delta > 0$ lost a mark.
$4k \ge 8$	
$k \ge 2$	

Question 15

Solutions	Marking Criteria
(a)	TATAL WING CLITECTS
(i)	
In $\triangle ADF$ and $\triangle BCE \ll$	Some students did not write introduction.
1. $AD = BC$ (sides of a square equal)	and the metalline with the state of the stat
2. $\angle ADF = 90^{\circ} = \angle BCE$ (property of a square)	
DF = DE + EF	
CE = CF + EF	
3. But $DE = CF$ (given)	
$\therefore DF = CF + EF = CE \qquad \qquad \textcircled{with reasonable explanation}$	
DF = CE	
$\therefore \Delta ADF \equiv \Delta BCE \text{ (SAS)} \qquad \textcircled{1}$	Some students wrote RHS when there
(ii)	was \underline{no} hypotenuse. Some students tried to use $AF = BE$
$\angle AFD = \angle BEF$ (corresponding angles, $\triangle ADF \equiv \triangle BCE$)	
Lot /AFD - B - /RFF	\therefore GE = EF (not acceptable). This assumes $AG = BG$ which was not
$\angle GFE = \beta = \angle GEF(same \ angles)$	proved.
$\therefore FE = GF \text{ (equal sides opposite equal angles in an isosceles triangle)}$	F. 0.100.
- Fr	
(b)	Too many incorrectly factored $t^2 - 5t + 6$
(i)	to $(t-6)(t+1)$
Let $\frac{dx}{dt} = 0$	
$\frac{Let}{dt} = 0$	
$t^2 - 5t + 6 = 0$	
(t-3)(t-2)=0	
t = 2, t = 3	
Velocity is zero at 2 seconds and 3 seconds.	
(ii) seconds and 3 seconds.	7
	Too many did not realise that $\frac{dx}{dt}$ was
$\frac{d^2x}{dt^2} = 2t - 5$	1
	parabolic : min was at $t=2\frac{1}{2}$
Let $\frac{d^2x}{dt^2} = 0$ $t = \frac{5}{2}$	Too many used $t = 2$ and $t = 3$ as times
dt^2	when velocity was a min. from previous
$t = \frac{3}{2}$	question.
2	
When $t = \frac{5}{2}$	
$dx_{-}(5)^{2}$ $(5)_{+5}$	
$\frac{dx}{dt} = \left(\frac{5}{2}\right)^2 - 5\left(\frac{5}{2}\right) + 5$	
=-0.25	
Minimum velocity is -0.25 metres per second	
(iii)	A few students used $t = 0, x = 3$ (misread
	question) question)
$x = \frac{t^3}{3} - \frac{5t^2}{2} + 6t + C$	quesion
When $t = 0, x = -3$	
-3 = C	① for constant
	\bigcirc for correct expression for x
$x = \frac{t^3}{3} - \frac{5t^2}{2} + 6t - 3$	Î
(iv)	Since particle changed directions at

TITI O	
When $t = 0, x = -3$	t = 2 and $t = 3$ and started at $t = 0$, we
When $t = 2$	need positions for each of these times to
$x = \frac{2^3}{3} - \frac{5 \times 2^2}{2} + 6 \times 2 - 3$	see where movement was made.
$\frac{x-\sqrt{3}-\sqrt{2}+6\times 2-3}{2}$	AT THE DOLLARY AND THE
5	ALTERNATIVELY:
$=\frac{5}{3}$	102 1103
When $t = 3$	Distance = $\left \int_0^2 f(t) dt \right + \left \int_2^3 f(t) dt \right $
$x = \frac{3^3}{3} - \frac{5 \times 3^2}{2} + 6 \times 3 - 3$	$=\frac{29}{6}$ m
	0
=1.5	
$3+\frac{5}{-}+\frac{5}{-}-1.5$	
Distance travelled is 3 3	
$=\frac{29}{}$	
6	
Distance travelled is $3 + \frac{5}{3} + \frac{5}{3} - 1.5$ $= \frac{29}{6}$ Distance travelled is $\frac{29}{6}$ metres	
6	
(c)	Some confused this as as a savings
(i)	question (i.e. superannuation)
$A_{\rm i} = 30000 \times (1 + \frac{0.09}{12}) - Q$	
÷ ~	
$=30000\times1.0075-Q$	
(ii)	
$A_2 = 1.0075 \times A_1 - Q$	To show a pattern, A_1 , A_2 & A_3 should be
$=1.0075\times(1.0075\times30000-Q)-Q$	$shown (A_1 above)$
$=30000\times1.0075^2 - Q(1+1.0075)$	
_ ,	
$A_3 = 1.0075 \times A_2$	
$=1.0075(30000\times1.0075^{2}-Q(1+1.0075))-Q$	
$=30000\times1.0075^{3}-Q(1+1.0075+1.0075^{2})$	
$A_n = 1.0075^n \times 30000 - Q(1 + 1.0075 + 1.0075^2 + \dots + 1.0075^{n-1})$	① for A _n in this form
,	
$A_n = 1.0075^n \times 30000 - \frac{Q \times 1(1.0075^n - 1)}{1.0075 - 1}$ $= 1.0075^n \times 30000 - Q \times \frac{400}{3}(1.0075^n - 1)$	Preferable if explanation was inserted
1.0075-1	here i.e. a geometric series with $a = 1$,
$-1.0075^{n} \times 20000$ 0×400 (1.0075) 1)	r = 1.0075, $n = n$ (although no deduction
$\frac{-1.0073 \times 30000 - Q \times - (1.0075 - 1)}{3}$	was made for not doing so)
$=30000(1.0075)^{n}-\frac{400Q(1.0075^{n}-1)}{3}$	① for correct expression
3	
(iii) When $n = 60$, $A_{60} = 0$	
$n = 00$, $n_{60} = 0$	
	① Correct equation
	① Correct answer
	- 551150 6115 1101
	Mostly well done question.
	The discount of the state of th

$$0 = 30000(1.0075)^{60} - \frac{400Q(1.0075^{60} - 1)}{3}$$

$$\frac{400Q(1.0075^{60} - 1)}{3} = 30000(1.0075)^{60}$$

$$Q = \frac{3 \times 30000(1.0075)^{60}}{400(1.0075^{60} - 1)}$$

$$= \$622.75 (nearest cent)$$

Question 16 Solutions	Marking Criteria
(a)	man ming Criticita
$6x^2 - 11 \equiv A(x+2)^2 + Bx + C$	Quadratic identity very poorly answered.
$= A\left(x^2 + 4x + 4\right) + Bx + C$	
$=Ax^{2}+4Ax+4A+Bx+C$	
$= Ax^{2} + (4A + B)x + (4A + C)$	
Equating coefficients:	
A = 6 $4A + B = 0$ $4A + C = -11$	
4(6) + B = 0 $4(6) + C = -11$	
B = -24 C = -35	
(b)	
(i)	Not well answered – some students find
$a^{2} + b^{2} = 7ab$ $(a+b)^{2} = a^{2} + 2ab + b^{2}$	difficult to SHOW things.
=7ab+2ab	
$=9ab$ $(a+b)^2$	
$\frac{(a+b)^2}{9} = ab$	
$(a+b)^2$	
$\left(\frac{a+b}{3}\right)^2 = ab$	
(ii)	
$\log\left(\frac{a+b}{3}\right) - \frac{1}{4}\left(\log a + \log b\right) = \log\sqrt{ab} - \frac{1}{4}\log ab$	
$= \frac{1}{2}\log ab - \frac{1}{4}\log ab$	·
2 4 105 4	
$=\frac{1}{4}\log ab$	
(c) (i)	Sama tawihly lava salations
Let $\angle ABE = \alpha$	Some terribly <u>long</u> solutions. Students must give <u>logical reasons</u> and
$AD^2 = 25$	try to be <u>concise</u> .
$AE^2 + DE^2 = 16 + 9$	
= 25	
∴ $\angle AED = 90^{\circ} (\triangle AED \ right - angled \ triangle)$	
Let $\angle FBE = \alpha$	
$\angle BAF + \angle AFB + \angle FBA = 180^{\circ} \ (\angle sum \ of \ triangle)$	
$\angle BAF + 90^{\circ} + \alpha = 180^{\circ}$	
$\angle BAF = 90^{\circ} - \alpha$	
$\angle DEF = \angle BAE \ (alternate \angle's, DC \parallel AB)$ $\therefore \angle BAE = 90^{\circ}$	
∠DAE = 70	

$\angle BAE = \angle EAF + \angle FAB$ $90^{\circ} = \angle EAB + 90^{\circ} - \alpha$ $\angle EAB = \alpha$ (ii) In $\triangle AED$ $\cos \angle ADE = \frac{4}{5}$ $\angle ADE = \cos^{-1}\left(\frac{4}{5}\right)$ $EF^{2} = 9 + 25 - 2 \times 3 \times 5 \cos\left[\cos^{-1}\left(\frac{4}{5}\right)\right]$ $= 9 + 25 - 2 \times 3 \times 4$ $= 10$ $EF = \sqrt{10}$ (d) (d)	
(ii) In $\triangle AED$ $\cos \angle ADE = \frac{4}{5}$ $\angle ADE = \cos^{-1}\left(\frac{4}{5}\right)$ $EF^2 = 9 + 25 - 2 \times 3 \times 5 \cos\left[\cos^{-1}\left(\frac{4}{5}\right)\right]$ $= 9 + 25 - 2 \times 3 \times 4$ $= 10$ $EF = \sqrt{10}$ Most did not realise to use the cosine rule – some tried Pythagoras (but no right angle!)	
In $\triangle AED$ $\cos \angle ADE = \frac{4}{5}$ $\angle ADE = \cos^{-1}\left(\frac{4}{5}\right)$ $EF^2 = 9 + 25 - 2 \times 3 \times 5 \cos\left[\cos^{-1}\left(\frac{4}{5}\right)\right]$ $= 9 + 25 - 2 \times 3 \times 4$ $= 10$ $EF = \sqrt{10}$ Most did not realise to use the cosine rule – some tried Pythagoras (but no right angle!)	
In $\triangle AED$ $\cos \angle ADE = \frac{4}{5}$ $\angle ADE = \cos^{-1}\left(\frac{4}{5}\right)$ $EF^2 = 9 + 25 - 2 \times 3 \times 5 \cos\left[\cos^{-1}\left(\frac{4}{5}\right)\right]$ $= 9 + 25 - 2 \times 3 \times 4$ $= 10$ $EF = \sqrt{10}$ Most did not realise to use the cosine rule – some tried Pythagoras (but no right angle!)	
$\cos \angle ADE = \frac{4}{5}$ $\angle ADE = \cos^{-1}\left(\frac{4}{5}\right)$ $EF^{2} = 9 + 25 - 2 \times 3 \times 5 \cos\left[\cos^{-1}\left(\frac{4}{5}\right)\right]$ $= 9 + 25 - 2 \times 3 \times 4$ $= 10$ $EF = \sqrt{10}$	
$=9+25-2\times3\times4$ $=10$ $EF = \sqrt{10}$	
$=9+25-2\times3\times4$ $=10$ $EF = \sqrt{10}$	
$=9+25-2\times3\times4$ $=10$ $EF = \sqrt{10}$	
$=9+25-2\times3\times4$ $=10$ $EF = \sqrt{10}$	
$EF = \sqrt{10}$	
	1
(d)	ļ
(d)	
(i) AB + AC + arcBC = 12	
$r + r + r\theta = 12$	
$2r + r\theta = 12$	
$r(2+\theta)=12$	
r = 12	
$r = \frac{12}{2 + \theta}$	
$Y = \frac{1}{2}r^2\theta$	
-	
$Y = \frac{1}{2} \times \left(\frac{12}{2+\theta}\right)^2 \times \theta$	
$=\frac{144}{2(2+\theta)^2}\times\theta$	
$=\frac{72\theta}{(2+\theta)^2}$	
$(2+\theta)^2$	
(ii) 72θ	
$Y = \frac{72\theta}{(2+\theta)^2}$	
$\frac{dY}{d\theta} = \frac{(2+\theta)^2 \times 72 - 72\theta \times 2(2+\theta)}{(2+\theta)^4}$	
Let $\frac{dY}{d\theta} = 0$	
$\frac{(2+\theta)^2 \times 72 - 72\theta \times 2(2+\theta)}{(2+\theta)^4} = 0$	
$72(\theta+2)[\theta+2-2\theta]=0$	
$72(\theta+2)(2-\theta)=0$	
$\theta = 2 (\theta > 0)$	

Checking if maximum

θ	1	2	3
dY	8	0	-72
$d\theta$	3		125

Therefore maximum with $\theta = 2$

$$Y = \frac{72 \times 2}{(2+2)^2}$$
144

$$=9 m^2$$

Many students did not attempt to show max, whilst many did not show <u>values</u> in their table.